Mark Scheme - PI4.1 Enthalpy Change for Solids and Solutions

	Comb = -16	pustion of C and H ₂ = $(2 \times -394) + (3 \times -28)$ 46 kJ mol ⁻¹	86) (1)				
	<u>ΔH</u> = -	–1646 – (–1560) = –86 kJ mol⁻¹	(1)	[2]			
(a)	Otherwis nothing t	se a temperature change would occur on adding th to do with the reaction	e acid which had [1]				
(b)	(i) B	est fit lines (1)					
	T (T	'emperature rise = 6.4 °C (1) Take value from candidate's best fit lines)	[2]				
	(ii) V	′olume of acid = 26.0 cm³	[1]				
	[If no bes	st fit lines award 0 in (i) and accept 25 cm³ in (ii)]					
(C)	Moles acid = 0.02425 (1)						
	Conc aci	id = <u>0.02425</u> = 0.933 mol dm ⁻³ (1) 0.026	[2]				
(d)	Heat =	51×4.18x 6.4					
	=	1364 J	[1]				
(e)	<u>Δ</u> Η =	- <u>1364</u> (1) 0.02425					
	=	– 56.2 kJ mol ⁻¹ (1)	[2]				
(f)	Pipette /	[1]					
(g)	No further reaction occurs (1)						
	The excess acid cools the solution (1) [2]						
(h)	Heat/ energy is lost to the environment (1)						
	Insulatio	n is improved e.g. lid on the polystyrene cup (1)	[2]				
			Total [14]				

2

1

3	(a)	(i)	I burette / (graduated) pipette	[1]		
			II volumetric / graduated / standard flask	[1]		
		(ii)	0.0064	[1]		
		(iii)	1.20 g / 100 cm ³ solution	[1]		
		(iv)	12.0 g / 100 cm ³ solution	[1]		
	(b)	(i)	The catalyst is in a different physical state to the reactants.	[1]		
		(ii)	Bonds broken 2 H-H \rightarrow 872 1 C-O \rightarrow 360 1 C-H \rightarrow 412 1 O-H \rightarrow 463 1 C=O \rightarrow 743			
			Total +2850 kJ (1)			
			Bonds made $3 \text{ C-H} \rightarrow 1236$ $1 \text{ C-O} \rightarrow 360$ $3 \text{ O-H} \rightarrow 1389$			
			Total -2985 kJ (1)			
			$\Delta H = 2850 - 2985 = -135 \text{ kJ mol}^{-1}$ (1)	[3]		
	(c)	Relat as on	ive molecular mass is a relative quantity (based on ¹ / ₁₂ th of the ¹² C ie unit).	atom [1]		
	(d)	(d) (i) The rate of the forward reaction is equal to the rate of the bac reaction.				
		(ii)	C₂H₄O	[1]		

Total [12]

(a)	(i)	$2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(I)$ (state symbols needed)				
		C(s) allowed as C(gr) or C(graphite)	[1]			
	(ii)	(if these elements were reacted together) other products would forr carbon does not react with hydrogen and oxygen under standard conditions	n/ [1]			
(b)	(i)	energy = 100 × 4.2 × 54 =22680	[1]			
	(ii)	moles ethanol = 0.81/46 = 0.0176 (1)				
		energy change = <u>22.68</u> △H = -1290 (1) 0.0176				
		-ve sign and correct to 3 sf (1)	[3]			
(C)	internet value numerically larger (1)					
	heat ignor	losses / incomplete combustion / thermal capacity of calorimeter red (1) no credit for energy loss	[2]			
(d)	(i)	$C_3H_7OH + 4\frac{1}{2}O_2 \rightarrow 3CO_2 + 4H_2O$ (ignore state symbols)	[1]			
	(ii)	negative enthalpy change means energy in bonds broken is less than that in bonds made [1]				
	(iii)	more bonds broken and made in propanol and therefore more ener released	gy [1]			
(e)	any 4	from:				
	both rene	conserve carbon / non-renewable fuel sources / fossil fuels / use wable sources				
	(these gas / liquid) suitable for different uses e.g. ethanol to fuel cars					
	atom economy gasification is less (some C lost as CO ₂) / CO ₂ produced in gasification is a greenhouse gas					
	CO is toxic					
	gasification at high temperature / enzymes need low temperature					
	enzyme approach therefore saves fuel / gasification needs more energy [4]					
	3 max if any reference to destruction of ozone layer					
	[2] The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter (1)					
	Answ	ver has suitable structure (1)				

Total [17]

4

5 enthalpy changes = -110

[1]	
	[1]

(b) $\Delta H_f = -417 \text{ kJ mol}^{-1}$ [1]

6 (a)
$$\Delta H = \Delta H_2 + \Delta H_3 - \Delta H_1$$
 [1]
(b) $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \rightarrow NO(g)$ state symbols requires [1]

7.	(a)	(i)	M _r (Cu	$JSO_4.5H_2O) = 249.7$	[1]
		(ii)	I.	Moles of copper(II) sulfate	
				= $0.250 \times 250/1000 = 6.25 \times 10^{-2}$ moles (1)	
				Mass = $6.25 \times 10^{-2} \times 249.7 = 15.6 \text{ g}(1)$	[2]
			II.	1 mark each for:	
			• • • •	Weighing method Dissolve copper sulfate in a smaller volume of distilled water Transfer to 250.0 cm ³ volumetric / standard flask Use of funnel Wash funnel / glass rod / beaker with distilled water into volumetric flask Add distilled water up to mark	
			•	Shake solution / mix thoroughly 5 max	[5]
			QWC specia	: organisation of information clearly and coherently; use of alist vocabulary where appropriate	[1]
	(b)	(i)	Powd (1)	er has a greater surface area (1) so gives a higher rate of reacti	on [2]
(ii) Extrapolate lines from start (level at 21.3°C) and end (thr at 180-270 seconds) (1)		polate lines from start (level at 21.3°C) and end (through poin 0-270 seconds) (1)	its		
			Temp	erature rise = 6.0° C (Range 5.8- 6.2° C) (1)	[2]
		(iii)	I.	Moles = 0.250 x 0.05 = 1.25 x 10 ⁻² moles	[1]
			II.	Zinc is the limiting reagent / Copper(II) sulfate is in excess	[1]
			III.	$\Delta H = -(50)x 4.18 \times 6.0 \div (6.12 \times 10^{-3}) (1)$	
				$\Delta H = -204902 \text{ J mol}^{-1}$	
				$\Delta H = -205 \text{ kJ mol}^{-1} (1)$	[2]
			IV.	Enthalpy measures chemical energy, and as heat energy increases, chemical energy must decrease	[1]
			Total	[18]	

8	(a)	(i)	M _r (C	CuSO ₄ .5H ₂ O) = 249.7	[1]
		(ii)	I.	Moles of copper(II) sulfate	
				= 0.250 x 250/1000 = 6.25 x 10 ⁻² moles (1)	
				Mass = $6.25 \times 10^2 \times 249.7 = 15.6 \text{ g}(1)$	[2]
			II.	1 mark each for:	
			:	Weighing method Dissolve copper sulfate in a smaller volume of distilled water Transfer to 250.0 cm ³ volumetric / standard flask Use of funnel Wash funnel / glass rod / beaker with distilled water into volumetric flask	
			:	Add distilled water up to mark Shake solution / mix thoroughly 5 max	[5]
				chate coldion mix aloredging c max	[0]
			QWC	C: organisation of information clearly and coherently; use of	141
			spec	larist vocabulary where appropriate	[IJ
	(b)	(i)	Powo (1)	der has a greater surface area (1) so gives a higher rate of react	ion [2]
		(ii)	Extra at 18	apolate lines from start (level at 21.3°C) and end (through poin 0-270 seconds) (1)	nts
			Tem	perature rise = 6.0°C (Range 5.8-6.2°C) (1)	[2]
		(iii)	I.	Moles = 0.250 x 0.05 = 1.25 x 10 ⁻² moles	[1]
			II.	Zinc is the limiting reagent / Copper(II) sulfate is in excess	[1]
			III.	$\Delta H = -(50)x 4.18 \times 6.0 \div (6.12 \times 10^{-3}) (1)$	
				ΔH = -204902 J mol ⁻¹	
				$\Delta H = -205 \text{ kJ mol}^{-1} (1)$	[2]
			IV.	Enthalpy measures chemical energy, and as heat energy increases, chemical energy must decrease	[1]
				Tota	[18]

9 **A [1]**